## **Gravitational Potential Energy:**

A 2.0 kg ball is placed on a table which is on the second floor of a building as shown.

What is the gravitational energy of the ball with respect to:

a) the floor of the room it is in?

b) the ground?

c)the roof?

$$=2\times9.8\times(-3)=-58.8$$

Recall how we derived the potential energy formula. It is the Work needed to lift an object a certain height

This works when the force is constant. If an object is lifted a long ways from Earth the force required to lift it the first 1000 m will be \_\_\_\_\_\_\_ than the force required to lift it the next 1000 m because the \_\_\_\_\_\_\_ glov: 1. tion of field strong decreases with distance. Since force is not constant, we will need to use a different formula.



## **Universal Gravitational Potential Energy**

$$E_{\rho} = \frac{G_{m,m_2}}{\Gamma}$$

Where  $m_1$  and  $m_2$  are the masses

G is 
$$6.674 \times 10^{-11} \frac{m^3}{kg \cdot s^2}$$

r is the distance between the centers of the masses

## Why is it negative?

reasonable choice for many problems.

**Example:** A 2500 kg satellite is in orbit  $3.6 \times 10^7$  m above the Earth's surface. What is the gravitational potential energy of the satellite due to the gravitational field of Earth? (Earth has radius  $6.38 \times 10^6$  m and mass  $5.98 \times 10^{24}$  kg.)

$$E_p = \frac{-6.674 \times 10^{-11} \times 2500 \, \text{kg} \times 5.90 \times 10^{34}}{(3.6 \times 10^7 \, \text{m} + 6.38 \times 10^6 \, \text{m})} = -2.3 \times 10^{10} \, \text{J}$$

What is the gravitational potential energy of the satellite on the surface of Ea

How much more potential energy does the satellite have when it is in orbit?

$$E_{pf} - E_{ei} = \frac{-2.3 \times 10^{11} - (-1.56 \times 10^{11})}{= (1.33 \times 10^{11})}$$

If the satellite were pulled directly into Earth, with no friction, how fast would it be moving when it hit the surface of the planet?

$$E_{k} = 1.33 \times 10^{11}$$

$$V = \sqrt{\frac{2 E_{k}}{m}} = 10315 \, \text{m/s}$$

## **Escape Velocity**

If you throw an object up it will come back down, unless you throw it \_\_\_\_\_ hard.

Escape velocity is the velocity which an object must be moving such that it will <u>rever</u> be pulled back by gravity.

As the object goes further from its launch site the gravitational pull will \_\_\_\_\_\_\_but will never be fully eliminated so we must consider the velocity required to get the object \_\_\_\_\_\_\_ far from its starting point.

This is the point we set as the \_\_\_\_\_\_ for our universal potential energy.

Recall energy is conserved so:

$$E_{K} \text{ at stort} = \Delta E_{p} \text{ from stort to end}$$

$$= E_{pp} - E_{pi}$$

$$= O - E_{pi}$$

$$= \frac{1}{2} A v^{2} = + \frac{G A_{i} m_{2}}{r} \text{ escape velocity}$$

$$V = \sqrt{\frac{2GM}{r}} \text{ formula}$$

Example: What is escape velocity on Earth? (m =  $5.98 \times 10^{24} kg$ , r=  $6.36 \times 10^6 m$ )

$$V = \int \frac{2 \times 6.674 \times 10^{-11} \times 5.98 \times 10^{24}}{6.36 \times 10^{6}}$$

$$= 11203 \times 15$$